Mammalian Abp1, a Signal-Responsive F-Actin–Binding Protein, Links the Actin Cytoskeleton to Endocytosis via the Gtpase Dynamin
نویسندگان
چکیده
The actin cytoskeleton has been implicated in endocytosis, yet few molecular links to the endocytic machinery have been established. Here we show that the mammalian F-actin-binding protein Abp1 (SH3P7/HIP-55) can functionally link the actin cytoskeleton to dynamin, a GTPase that functions in endocytosis. Abp1 binds directly to dynamin in vitro through its SH3 domain. Coimmunoprecipitation and colocalization studies demonstrated the in vivo relevance of this interaction. In neurons, mammalian Abp1 and dynamin colocalized at actin-rich sites proximal to the cell body during synaptogenesis. In fibroblasts, mAbp1 appeared at dynamin-rich sites of endocytosis upon growth factor stimulation. To test whether Abp1 functions in endocytosis, we overexpressed several Abp1 constructs in Cos-7 cells and assayed receptor-mediated endocytosis. While overexpression of Abp1's actin-binding modules did not interfere with endocytosis, overexpression of the SH3 domain led to a potent block of transferrin uptake. This implicates the Abp1/dynamin interaction in endocytic function. The endocytosis block was rescued by cooverexpression of dynamin. Since the addition of the actin-binding modules of Abp1 to the SH3 domain construct also fully restored endocytosis, Abp1 may support endocytosis by combining its SH3 domain interactions with cytoskeletal functions in response to signaling cascades converging on this linker protein.
منابع مشابه
Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation.
The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton...
متن کاملDynamin2 GTPase and cortactin remodel actin filaments.
The large GTPase dynamin, best known for its activities that remodel membranes during endocytosis, also regulates F-actin-rich structures, including podosomes, phagocytic cups, actin comet tails, subcortical ruffles, and stress fibers. The mechanisms by which dynamin regulates actin filaments are not known, but an emerging view is that dynamin influences F-actin via its interactions with protei...
متن کاملThe yeast dynamin-related GTPase Vps1p functions in the organization of the actin cytoskeleton via interaction with Sla1p.
Recent studies have suggested that the function of the large GTPase dynamin in endocytosis in mammalian cells may comprise a modulation of actin cytoskeleton. The role of dynamin in actin cytoskeleton organization in the yeast Saccharomyces cerevisiae has remained undefined. In this report, we found that one of the yeast dynamin-related proteins, Vps1p, is required for normal actin cytoskeleton...
متن کاملDirect dynamin-actin interactions regulate the actin cytoskeleton.
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling...
متن کاملActin takes its hat off to dynamin.
A major player in membrane traffic, the large GTPase dynamin, is known in the actin dynamics field for its indirect association with the actin cytoskeleton via actinbinding proteins (ABPs) like cortactin. In this issue of The EMBO Journal, Gu et al extend this picture by revealing a direct interaction between dynamin and F-actin. They further show that oligomerized dynamin kicks off the gelsoli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 153 شماره
صفحات -
تاریخ انتشار 2001